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Abstract

Grammatical Error Correction (GEC) aims to automat-
ically detect and correct grammatical errors. In this pa-
per, we address the challenge of enhancing type-driven
multi-turn error correction systems using a novel ap-
proach of distillation. Prior methods often struggled
with the integration of raw and pseudo data, preventing
models from gradually learning error correction, and
neglected the interdependencies between various error
types. In contrast, subsequent work introduced the con-
cept of intermediate sentences to train models progres-
sively in error correction and demonstrated that recti-
fying one error type could enhance the model’s ability
to predict other error types. This insight has inspired our
work, where we harness distillation to allow models that
correct one type of error to transmit their knowledge
of other error types to other models. In this study, we
propose an approach to improve type-driven multi-turn
correction by distilling knowledge. We simultaneously
train multiple teacher models and a student model, all
sharing the same model structure. The student model is
trained on raw data, while the teacher models are trained
on data corrected for specific error types based on the
original data. These teacher models excel at address-
ing different error types, which significantly narrows the
prediction gap between the student and teacher mod-
els. Our contributions encompass introducing distilla-
tion in the domain of grammatical error correction and
substantiating its effectiveness through comprehensive
qualitative and quantitative experiments.

Introuction
Grammatical Error Correction (GEC) aims at automatically
detecting and correcting grammatical (and other related) er-
rors in a text. It attracts much attention due to its prac-
tical applications in writing assistant(Napoles, Sakaguchi,
and Tetreault 2017), speech recognition systems (Karat et
al. 1999; Wang et al. 2020) etc. Inspired by the success
of neural machine translation (NMT), some models adopt
the same paradigm, namely NMT-based models. They have
been quite successful, especially with data augmentation
approach (Boyd 2018; Ge, Wei, and Zhou 2018a; Taka-
hashi, Katsumata, and Komachi 2020). However, these mod-

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

els have been blamed for their inefficiency during inference
(Chen et al. 2020; Sun et al. 2021). To tackle this issue, many
researchers resort to the sequence-to-label (Seq2Label) for-
mulation, achieving comparable or better performance with
efficiency (Malmi et al. 2019; Stahlberg and Kumar 2020;
Omelianchuk et al. 2020a).

Despite their success, both NMT-based and Seq2Label
models are trained by one-iteration learning, while correct-
ing errors for multiple iterations during inference.As a con-
sequence, they suffer from exposure bias and exhibit per-
formance degrade (Ge, Wei, and Zhou 2018a; Parnow, Li,
and Zhao 2021). To deal with this issue, (Ge, Wei, and Zhou
2018a) propose to generate fluency-boost pseudo instances
as additional training data. Besides, (Parnow, Li, and Zhao
2021) dynamically augment training data by introducing the
predicted sentences with high error probabilities.However,
they simply mixed raw data with pseudo data, and the model
was unable to gradually learn to correct errors. Moreover,
they did not consider the interdependencies between differ-
ent types of errors. Therefore, (Lai et al. 2022) introduced in-
termediate sentences to train the model to gradually correct
errors, and also demonstrated that after correcting one type
of error, the model’s ability to predict other types of errors
improved. This insight inspired us, as we believe that distil-
lation can effectively leverage this point, enabling a model
that first corrects one type of error to pass on better knowl-
edge of other types of errors to other models.

In this paper, we propose to enhance type-driven multi-
turn correction through distillation. Specifically, we simulta-
neously train multiple teacher models and one student model
with identical model structures. In terms of data, the stu-
dent model uses raw data, while the teacher models use data
corrected for a specific type of error based on the original
data. In other words, they are trained to correct other types
of errors. According to previous research, teacher data tends
to learn better when addressing other types of errors, thus
bridging the gap between the student and teacher model’s
predictions in this aspect. Overall, our contributions are as
follows:

• We introduce a method to improve type-driven multi-
turn correction systems using distillation, to the best
of our knowledge, for the first time in the field of
grammatical error correction.



• Through comprehensive qualitative and quantitative
experiments, we explore the effectiveness of distil-
lation in enhancing type-driven multi-turn correction
systems and validate our ideas.

Related Work
In the domain of Grammatical Error Correction (GEC),
two primary model categories have emerged, namely,
Transformer-Dominant Neural Machine Translation
(NMT)-Based Models and Seq2Label Models. Further-
more, the works involving Seq2Label Models can be
subcategorized into two distinct approaches: those focused
on single-turn grammatical error correction and those
dedicated to multiple-turn grammatical error correction.

Transformer-Dominant NMT-Based Models
The first category encompasses Transformer-dominant Neu-
ral Machine Translation (NMT)-based models that approach
GEC as a machine translation task. Noteworthy contribu-
tions within this category include works by (Boyd 2018)
and (Grundkiewicz, Junczys-Dowmunt, and Heafield 2019).
These models take erroneous sentences as input and gener-
ate corrected sentences token by token.

Seq2Label Models
single-turn grammatical error correction The second
category of models is led by GECToR-based Seq2Label
models, with contributions from (Malmi et al. 2019) and
(Omelianchuk et al. 2020b). Seq2Label models, particularly
GECToR, have demonstrated enhanced efficiency and effec-
tiveness in grammatical error correction. They leverage pre-
trained language models as encoders to learn word-level rep-
resentations and employ softmax-based classifiers to predict
editing-action labels.

GEC models may not always achieve complete sentence
corrections with a single iteration of inference. To over-
come this limitation, researchers have explored data aug-
mentation techniques commonly used in the broader field
of Natural Language Processing (NLP). (Ge, Wei, and Zhou
2018b) introduced an iterative inference approach and pro-
posed a fluency boost learning method. They pair predicted
less fluent sentences with their reference sentences during
training, thereby creating new erroneous-reference sentence
pairs. The objective is to enhance the model’s fluency cor-
rection capabilities. Additionally, (Parnow, Li, and Zhao
2021) developed a confidence-based method to address the
mismatches between training and inference in Seq2Label
models. Their approach involves creating additional train-
ing data by pairing low-confidence sentences with reference
sentences. This strategy aims to improve the correction ac-
curacy of Seq2Label models. Nonetheless, it is important
to note that these two methodologies simply amalgamate
pseudo data with the original dataset in a one-iteration learn-
ing approach, overlooking the interdependencies between
different types of errors.

Multiple Turns Grammatical Error Correction Diverg-
ing from the conventional one-iteration approaches, we

adopt an iterative method as proposed by (Lai et al. 2022).
This approach is engineered to enhance the model’s aware-
ness of gradual corrections, thereby fostering its adaptability
and progressive improvement. Moreover, traditional multi-
ple turns GEC often neglect the existing interdependence
among diverse error types. To address this, our model in-
corporates the multiple turns GEC strategy to boost perfor-
mance by discerning and leveraging the interrelatedness of
these errors.

Knowledge Distillation
Knowledge distillation is a widely-used technique in ma-
chine learning that involves training a smaller, simpler
model (referred to as the student) to emulate the larger,
more intricate model (the teacher). The objective is to enable
the student model to attain a performance level comparable
to that of the teacher model, albeit with a lower computa-
tional cost. In the sphere of Grammatical Error Correction
(GEC), distillation techniques have demonstrated promising
outcomes as (Fathullah, Gales, and Malinin 2021). Their
research introduced Ensemble Distillation (EnD) and En-
semble Distribution Distillation (EnDD), novel methods that
consolidate the ensemble into a singular model. Moreover,
(Xia et al. 2022) employed knowledge distillation to com-
press model parameters, thereby enhancing the model’s re-
silience against attacks. Building on these prior studies, our
research applies distillation techniques to train a grammati-
cal error correction model. Our goal is to harness the power
of knowledge distillation to devise a robust and efficient
model for GEC.

Approach
In this section, we introduce our approach in detail. Our ap-
proach involves training multiple teacher models and a stu-
dent model concurrently. All models will share the same ar-
chitectural framework to ensure consistency in learning.The
teacher models will be trained on pseudo data corrected for
specific error types, while the student model will be trained
on raw data.

Problem Formulation
In the realm of Grammatical Error Correction (GEC),
our approach incorporates token-level transformations and
seq2label processes to enhance the accuracy of corrections.
This methodology is pivotal in addressing common gram-
matical errors, such as spelling mistakes, noun number er-
rors, subject-verb agreement issues, and verb form errors.

Token-level Transformations: We define custom token-
level transformations T (xi), which are applied to source to-
kens (x1, x2, ..., xN ) to recover the target text. These trans-
formations are designed to increase the coverage of gram-
matical error corrections, especially for a limited output vo-
cabulary. Our system includes basic transformations such as
KEEP, DELETE, APPEND, and REPLACE, along with spe-
cialized g-transformations for tasks like case changing, to-
ken merging, and splitting. Additionally, grammatical prop-
erties for tokens are encoded in specific transformations like
NOUN NUMBER and VERB FORM.



Figure 1: The overall process example of our distillation method. Both the student model and the teacher model use the same
model structure, but the parameters are not shared. The teacher model is trained using modified data; the student model is
trained using unmodified data, and subsequently, the KL loss is calculated based on the probability distributions output by both
models

Seq2label Process: The seq2label process begins by de-
tecting minimal spans of tokens that define the differences
between source tokens (x1, x2, ..., xN ) and target tokens
(y1, y2, ..., yM ). For each source token xi, we search for the
best-fitting subsequence of target tokens Υi = (yj1, ..., yj2)
by minimizing a modified Levenshtein distance. This step
ensures that each source token is associated with the most
appropriate sequence of target tokens. The final step in-
volves selecting one transformation for each source token,
with a preference for non-KEEP tags in cases of multiple
transformations.

Three Stage Training
Our model employs a comprehensive three-stage train-
ing process, leveraging powerful language models such as
RoBERTa and XLNet. This training regimen is designed to
progressively refine the model’s ability to detect and correct
grammatical errors in texts. The stages of training are as fol-
lows:

1. Pre-training on Synthetic Errorful Sentences: In the
initial stage, the model undergoes pre-training on a large
dataset comprising synthetic errorful sentences. In this
stage, approximately 9 million parallel sentences are used.
These sentences are synthetically generated to include
a wide range of grammatical errors. This extensive pre-
training serves as a foundation for the model, equipping it
with a preliminary understanding of common grammati-
cal mistakes and their corrections.

2. Fine-tuning on Errorful-only Sentences: The second
stage involves fine-tuning the model exclusively on error-
ful sentences. This stage aims to focus the model’s learn-
ing on the nuances of various grammatical errors with-
out the interference of correct sentences. By doing so, the
model develops a more refined ability to identify and cor-

rect errors, enhancing its accuracy and efficiency in error
correction.

3. Fine-tuning on a Subset of Errorful and Error-free
Sentences: In the final stage, the model undergoes fur-
ther fine-tuning on a mixed dataset of both errorful and
error-free sentences. This stage introduces the model to
a more realistic linguistic environment, where it learns to
distinguish between correct and incorrect usage in a more
balanced context. This stage is crucial for fine-tuning the
model’s decision-making process, ensuring it does not
overcorrect and maintains the integrity of the original text
when no errors are present.

Partially Corrected Distillation
During training stage 2 and stage 3, we employ distillation
to enhance performance. The teacher models are trained on
data corrected for specific errors. We postulate that through
this process, the teacher models acquire additional knowl-
edge beneficial for correcting other errors. This knowledge
is transferred to the student models using Kullback-Leibler
(KL) divergence. In this transfer, we only align certain out-
put aspects of the teacher and student models, specifically
where the teacher’s training data remains unmodified. This
ensures that the student model learns only the supplementary
knowledge related to correcting other errors during distilla-
tion. If alignment was done across all aspects, the corrected
error outputs in the teacher model’s training data would ad-
versely impact the student model’s error correction capabil-
ities.

Our Kullback-Leibler loss formula is as follows:

DKL(T ∥ S) =
∑
x∈X

T (x) log

(
T (x)

S(x)

)
(1)

When calculating the loss, we use bidirectional KL loss
for distillation:



Dataset # sentences % errorful sentences Training stage

PIE-synthetic 9,000,000 100.0% 1
Lang-8 947,344 52.5% 2
NUCLE 56,958 38.0% 2
FCE 34,490 62.4% 2
W&I+LOCNESS 34,304 67.3% 2, 3

Table 1: Training datasets. Training stage 1 is pretraining on synthetic data. Training stages 2 and 3 are for fine-tuning.

Model Pre-trained BEA-2019(test) CoNLL-2014(test)
Prec. Rec. F0.5 Prec. Rec. F0.5

GECToR RoBERTa 77.2 55.1 71.5 72.1 42.0 63.0
XLNet 79.2 53.9 72.4 77.5 40.1 65.3

GECToR(REPLACE-first) RoBERTa 81.27 50.67 72.51 77.36 40.35 65.37
XLNet 81.33 51.55 72.91 77.83 41.82 66.40

GECToR-D(APPEND+DELETE) RoBERTa 79.85 51.53 72.94(+0.03) 75.39 41.57 65.44(+0.07)
XLNet 81.14 50.83 72.92(+0.01) 77.08 42.03 66.66(+0.26)

GECToR-D(RAPLACE+DELETE) RoBERTa 79.39 52.25 72.95(+0.04) 75.70 39.85 65.46(+0.09)
XLNet 82.35 49.52 72.95(+0.04) 77.05 42.03 66.53(+0.13)

GECToR-D(APPEND+RAPLACE) RoBERTa 80.31 51.14 72.98(+0.07) 76.77 40.95 65.59(+0.22)
XLNet 81.89 50.55 73.04(+0.13) 78.18 42.67 67.02(+0.62)

Table 2: Results of our quantitative experiments. GECToR and GECToR(REPLACE-first) are baselines. GECToR-D(XX+XX)
are our methods

Dloss =

k∑
i=1

DKL(Ti ∥ S) +DKL(S ∥ Ti)

2
(2)

where T denotes the teacher model, S represents the stu-
dent model, and k = 2, as we employ two teacher models.

Experiment
Experiment Setup
As mentioned in Approach, our method trains multiple
teacher models as well as a student model simultaneously.
To ensure the consistency of the learning process, all models
follow the same architecture. The teacher model is trained
on data corrected for a specific error type, while the stu-
dent model is trained on initial data without any corrections.
Multiple teacher models and student models are optimized
through Kullback-Leibler Divergence. In view of the power-
ful capabilities and wide application of pre-trained language
models, we use XLNet and RoBERTa as our backbone mod-
els respectively.
XLNet is an advanced language model that redefines how
contextual information is captured in text. It innovatively
combines autoregressive and autoencoding techniques, uti-
lizing permutation language modeling to predict the next
word by considering all possible word permutations in a
sentence. With a Transformer-XL architecture, XLNet effec-
tively captures bidirectional context, demonstrating superior
performance in various natural language processing tasks.
RoBERTa is an enhanced version of the BERT model, fo-
cusing on robust pretraining approaches to refine language
representation. By optimizing hyperparameters, leveraging

larger training datasets, and employing dynamic masking
strategies during pretraining, RoBERTa outperforms BERT
in understanding complex language structures and nuances.
This model has achieved state-of-the-art results across di-
verse NLP benchmarks, showcasing its prowess in handling
contextual information and providing more robust language
representations.

Datasets
To make a fairer comparison, we use the same training data
and initialization parameters as (Omelianchuk et al. 2020b)
and evaluate the model on BEA-2019(W&I+LOCNESS)
dev, test set, and CoNLL-2014 test set. Table 1 describes the
dataset details used in the different training stages of train-
ing. For pretraining stage 1, we use 9M parallel sentences
with synthetically generated grammatical errors (Awasthi et
al. 2019). In fine-tuning phases 2 and 3, we used the fol-
lowing datasets: National University of Singapore Corpus
of Learner English (NUCLE), Lang-8 Corpus of Learner
English (Lang-8), FCE dataset, the publicly available part
of the Cambridge Learner Corpus, and Write & Improve +
LOCNESS Corpus.

Metric
We use precision, recall, and harmonic mean F0.5 as evalu-
ation metric.

Precision measures the accuracy of the positive predic-
tions made by the model. It is the ratio of true positive pre-
dictions to the total number of positive predictions (true pos-
itives + false positives).



Recall (also known as sensitivity or true positive rate)
measures the model’s ability to correctly identify all posi-
tive instances. It is the ratio of true positive predictions to
the total number of actual positives (true positives + false
negatives).

F0.5 score is the harmonic mean of precision and recall,
giving more weight to precision. It combines both metrics
into a single value, where an F0.5 score closer to 1 indicates
better precision and recall balance.

Baseline
Given that our proposed improved method is inspired by
(Lai et al. 2022), and to the best of our knowledge, (Lai et
al. 2022), (Omelianchuk et al. 2020b) is the current state-of-
the-art method, we choose (Lai et al. 2022), (Omelianchuk
et al. 2020b) as our baseline.

GECToR In (Omelianchuk et al. 2020b), the authors in-
troduce a straightforward and effective GEC (Grammar Er-
ror Correction) sequence tagger utilizing a Transformer en-
coder. Their system undergoes pre-training on synthetic data
followed by two stages of fine-tuning: initially on error-
containing corpora and subsequently on a blend of corpora
containing errors alongside error-free parallel data. Custom
token-level transformations are devised to align input tokens
with target corrections.

GECToR(REPLACE-fitst) In (Lai et al. 2022), addi-
tional training instances are constructed from each training
instance, incorporating the correction of specific types of
errors. These additional instances, along with the original
ones, are used to train the model successively. This method
trains the model to progressively correct errors and lever-
age the interdependence between different error types for
improved performance.We choose the most advanced exper-
imental results in (Lai et al. 2022) as another baseline, that
is, the method of correcting Replace errors first and then cor-
recting other types of errors.

Main Results and Analysis
Table 2 shows our experimental results. For the BEA-2019
dataset, the baseline GECToR models show reasonable per-
formance, with XLNet slightly outperforming RoBERTa
in terms of precision, recall, and the F0.5 score. The
GECToR-D models demonstrate a marked improvement
across all metrics when using XLNet, with the most sig-
nificant gain observed in precision. Notably, the GECToR-
D (APPEND+REPLACE) model achieves the highest F0.5
score when using XLNet as the pre-trained model, indicating
that the combination of append and replace operations is par-
ticularly effective for this dataset. The gains in the F0.5 score
suggest a better balance of precision and recall, skewed to-
wards precision.

Turning to the CoNLL-2014 dataset, the baseline perfor-
mances are again surpassed by the proposed models. Here,
GECToR-D (APPEND+REPLACE) with XLNet attains the
highest precision, recall, and F0.5 score among all tested
configurations, showing a substantial increase, especially

in the F0.5 score. This model’s superior performance un-
derscores the efficacy of the combined append and replace
strategies for this specific testing set.

The improvement of our methods over the baseline could
be attributed to several factors: (1) Operation Combina-
tion: The integration of different operations like append, re-
place, and delete likely provides a more nuanced approach
to correcting various types of errors, leading to higher pre-
cision and recall. (2) Error Type Sensitivity: Some GEC
errors are better corrected with specific operations. For in-
stance, the APPEND operation might be more suitable for
missing word errors, while REPLACE is ideal for substi-
tuting incorrect words. The combined strategies cater to a
broader range of error types. (3) Model Synergy: The pre-
trained models, RoBERTa and XLNet, may have inherent
strengths that are better leveraged by the proposed methods.
For instance, XLNet’s permutation-based training might be
more adept at handling the order-sensitive nature of ap-
pend and replace operations. (4) Contextual Understand-
ing: The proposed methods may enhance the contextual un-
derstanding of sentences, allowing for more accurate correc-
tions that consider the broader textual environment, which is
crucial for GEC tasks.

In conclusion, our methods effectively utilize the
strengths of pre-trained language models, employing a tai-
lored combination of operations that align with the complex-
ities of grammar error correction. These techniques seem to
enhance both the detection (recall) and the correction (pre-
cision) of grammatical errors, as reflected in the improved
F0.5 scores.

Conclusion
In this paper, we introduce a novel approach to enhance
type-driven multi-turn error correction systems using a
distillation-based method. Our method simultaneously trains
multiple teacher models, each specializing in correcting spe-
cific error types, along with a student model on raw data.
The distillation process allows the knowledge gained by the
teacher models in correcting one type of error to be trans-
mitted to the student model, narrowing the prediction gap.

Through comprehensive experiments on BEA-2019 and
CoNLL-2014 datasets, we demonstrate the effectiveness of
our approach. The results show significant improvements in
precision, recall, and F0.5 score compared to the baseline
models.

Our work not only introduces distillation to the domain
of grammatical error correction but also provides insights
into the interdependence between different error types. The
results suggest that a model trained to correct one type of
error can transfer knowledge beneficial for correcting other
types of errors.

In future work, we aim to explore additional strategies for
error correction and investigate the generalization capabili-
ties of the proposed method across diverse datasets. Addi-
tionally, we plan to analyze the impact of hyperparameter
tuning and model architecture variations on the overall per-
formance. Overall, our work opens avenues for further re-
search in the intersection of grammatical error correction,
distillation, and multi-turn error correction systems.
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